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Stabilization of networked control systems under
clock offsets and quantization

Kunihisa Okano, Masashi Wakaiki, Guosong Yang, and João P. Hespanha

Abstract—This paper studies the impact of clock mismatches
and quantization on networked control systems. We consider a
scenario where the plant’s state is measured by a sensor that
communicates with the controller through a network. Variable
communication delays and clock jitter do not permit a perfect
synchronization between the clocks of the sensor and controller.
We investigate limitations on the clock offset tolerable for
stabilization of the feedback system. For a process with a scalar-
valued state, we show that there exists a tight bound on the offset
above which the closed-loop system cannot be stabilized with any
causal controllers. For higher dimensional plants, if the plant
has two distinct poles, then the effect of clock mismatches can
be canceled with a finite number of measurements, and hence
there is no fundamental limitation. We also consider the case
where the measurements are subject to quantization in addition
to clock mismatches. For first-order plants, we present necessary
conditions and sufficient conditions for stabilizability, which show
that a larger clock offset requires a finer quantization.

I. INTRODUCTION

The components of networked control systems are often
spatially distributed and hence need to communicate through
digital networks. A significant challenge in such systems
is that the processors in the components may not share a
common notion of time, because their local clocks are not
properly synchronized; see survey papers [1], [2]. Quantization
is another significant challenge to the design of networked
control systems, as surveyed in [3], [4] and motivated the study
of bit-rate constraints in channels [5] and limited capabilities
of sensors/actuators [6]. In this paper, we consider clock
mismatches and quantization simultaneously and study the
impact of such imperfections on the stability of feedback
control systems.

With a growing demand for digital communication, there
has been a vast amount of research providing clock syn-
chronization methodologies over networks; see, e.g., [7]–
[9] and the survey papers [10], [11]. Moreover, the Global
Positioning System (GPS) has allowed us to have access to
a global clock that has been used in many practical systems.
However, we cannot attain perfect synchronization in most
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practical situations. In fact, the work [12] has shown that
synchronization of clocks with unknown skews and offsets is
impossible in the presence of unknown communication delays.
Furthermore, recent works [13], [14] have pointed out that
GPS signals can be spoofed and hence are vulnerable against
attacks.

In this paper, we consider feedback systems where the
sensor measuring the plant state and the controller do not share
a common clock. This asynchronism results in measurement
that can cause fundamental limitations in our ability to stabi-
lize a system through feedback. The clock mismatches cause
uncertainty on sampling instants, which has been recognized
as an important topic in control as there are many related
works [15]–[20]. Precision of sensor clocks is of interest also
from practical viewpoints. In [21], an algorithm exploiting
time-stamps is presented which can compensate delays in
a distributed control system. In mechatronic systems where
sampling periods are fast (less than 1 ms), the effect of clock
mismatches becomes relatively severe and hence compensation
methodologies would be employed [22].

We consider the situation in which the clock offset between
the sensor and the controller is known to be bounded, but
its precise value is unknown and potentially time varying.
Our objective is to clarify limitations on the tolerable clock
offsets for stability. We first consider the case in which the
communication channel has unlimited bandwidth and thus can
convey real-valued state measurements. In such configuration,
for a process with a scalar-valued state, we derive a necessary
and sufficient condition for stabilizability, which gives a tight
upper bound on the clock offset beyond which stabilization
is impossible. In contrast, for a process with a vector-valued
state, there exists no fundamental limitation on the offset if
the plant has at least two distinct modes.

We also consider the scenario where the sensor measure-
ments must be quantized to discrete values. We consider
quantizers that are static piecewise constant functions, which
map the observed state to a discrete set of values. We focus
our attention on two types of quantizers that have been widely
considered in the literature: logarithmic quantizers [23]–[25]
and uniform quantizers [26]–[28]. It has been shown that, by
itself, quantization imposes fundamental limitations on stabi-
lizability [23], [28], [29]. Here, we introduce the additional
complexity of clock mismatch and derive necessary conditions
and sufficient conditions on coarseness of the quantizer and
the maximum clock offset for stabilizability. The conditions
provide explicit relationships between the tolerable clock
offsets and the required quantization levels for stabilizability.

Stabilization of systems with uncertain sampling intervals
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Fig. 1: Feedback system.

have been studied in various ways. It has been regarded as
systems with input delay [15], [16] and uncertain impulsive
systems [17], [18]. Polytopic overapproximation [19] and the
gridding approach [20] are also notable as an instrument to
deal with such uncertainty. These papers restrict their atten-
tion to linear time-invariant (LTI) controllers and sufficient
conditions are provided. In a recent work [30], we employed a
time-stamp aware estimator and investigated the stabilization
problem with static clock offsets. The problem is modeled
as simultaneous stabilization for parametric uncertainty, and
a sufficient condition for the existence of stabilizing LTI
controllers is given. Now we consider time-varying clock
offsets and the controller’s class which includes general causal
systems. We present necessity results for stabilizability rather
than only sufficiency ones. These results thus characterize
fundamental requirements on the accuracy of local clocks for
stabilizability.

For the analysis of stabilizability, we compute the state
estimation set and investigate under which conditions it shrinks
over time. By computing the tight estimation set and its decay
rate, we are able to show necessity results. It is worth noticing
that in the literature listed above contraction of Lyapunov
functions or Lyapunov-Krasovskii functionals are studied to
verify stability. We also note recent works [31], [32] that
fall in this context. While in our approach the decay rate
is determined exactly, it is not in the literature, which leads
flexibility for the extensions to the cases with disturbances and
uncertainties in addition to clock offsets.

This paper is organized as follows. We formally state the
problem in Section II and introduce the notion of tight state
estimation sets in Section III. In Section IV, we consider the
case where there is no quantization and present conditions for
stabilizability under clock offsets. The setup is extended to the
case of quantized measurements in Section V, and stabilization
under both clock offsets and quantization is considered in
Section VI. Finally, we provide concluding remarks in Sec-
tion VII. A subset of the results in Section IV appeared in the
conference paper [33].

Notations: Z+ denotes the set of nonnegative integers; 0
(bold-faced zero) stands for the zero vector of appropriate
dimension; and ∥ · ∥ represents the Euclidean norm.

II. PROBLEM FORMULATION

Consider the feedback system depicted in Fig. 1. The plant
to be controlled is the following continuous-time linear time-

TimekT (k+1)T

�k

yk yk+1

��

�k+1

must remain constant (per Assumption 3)u(t)

Fig. 2: Time chart.

invariant process:

ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the input.
The unknown initial state x(0) may be anywhere in Rn. We
introduce the following assumption on the plant.

Assumption 1: The system (1) is unstable and controllable,
and A is invertible.

It is common in the literature (e.g., [28], [29]) to consider
unstable and controllable systems to make the stabilization
problem non-trivial, as any component of the state that belongs
to a stable invariant subspace of A will converge to zero,
provided that the control signal converges to zero. We note that
even if A is singular, that does not change the stabilizability of
the plant for clock synchronization errors. Suppose that A has
a zero eigenvalue and the corresponding state is decomposed.
By letting the input to the state be zero during a sampling
period, the state will be observed exactly. Once it is known, the
controller can bring it to the origin because of controllability.
Thus we assume that A is nonsingular.

The sensor attempts to sample the state periodically with
period T , but does not necessarily achieve it due to clock
errors. Let yk, k ∈ Z+, be the kth observed state, and let
T > 0 be the desired sampling period from the perspective
of the controller clock. Fig. 2 illustrates a time chart of
sampling: The actual time instants kT + δk at which the
samples yk are generated are represented by the crosses,
whereas the gray boxes represent the uncertainty δk inherent
to the timing information due to the offset between the clocks
of the sensor and the controller. We consider the case in which
the magnitude of the clock offset is bounded.

Assumption 2: For all time k ∈ Z+, δk is bounded as

0 ≤ δk ≤ ∆ < T (2)

with a constant ∆.
There are various algorithms for the clock offset estimation,

and the resulting estimation errors have been analyzed; see,
e.g., [34]. These results can be used to determine the offset
bound ∆. The positiveness of the offset δk introduces no loss
of generality, as it can always be guaranteed by an appropri-
ate redefinition of the time scale. Under Assumption 2, the
sequence yk of observed states is produced by the following
model:

yk = x(kT + δk), δk ∈ [0,∆], (3)

where the actual sampling instant kT + δk is unknown be-
cause of the unknown jitter δk. We note that the controller
cannot determine the precise value of δk based on the time
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instant at which the sample yk arrives because of unknown
communication delay.

Using the received observations y0, . . . , yk, the controller
needs to construct the input u(t), t ≥ 0. We consider the
following assumption.

Assumption 3: The control input is constant during [kT,
kT +∆] for every k:

u(t) = uk, ∀t ∈ [kT, kT +∆], ∀k ∈ Z+,

and u(t) does not depend on the future measurements {yk :
kT +∆ ≥ t}.
This assumption guarantees causality, but it also implies that
during the intervals in which the sensor may measure the plant
state, the controller holds the input. During the period t ∈
(kT + ∆, (k + 1)T ) for which the state has been measured,
we allow the controller to take any value.

Our objective is to clarify how large ∆ can be to ensure the
stabilizability of the system.

Remark 1: Assumption 3 is required to prove the necessity
results in the paper. We note that the sufficient conditions for
stabilizability that we present in Sections IV and VI hold even
if we limit the class of controllers to piecewise constant ones,
for which Assumption 3 trivially holds.

III. COMPUTATION OF ESTIMATION SETS

In Sections III and IV, we consider a feedback system
with no quantization and study the effect of clock mismatches
between the sensor and the controller on the stabilizability of
the system.

Here, we introduce the notion of a tight state estimation set,
which will be instrumental to establish the necessity results in
the paper. Let I−k denote the set of plant states x(kT ) that are
compatible with all the measurements y0, y1, . . . , yk−1 taken
before time kT . We shall call this the estimation set of x(kT ).
Given I−k , we now study how to update the estimation set of
x(kT ) using the new observation yk. From (3), yk is given by

yk = eAδk (x(kT ) + Ψ(δk)uk) , (4)

where Ψ(δk) :=
∫ δk
0

e−AsBds. Thus, yk depends on the
unknown parameter δk ∈ [0,∆] and the true state x(kT ). Once
yk is known, x(kT ) must lie in the following set Jk:

Jk =
{

e−Aδkyk −Ψ(δk)uk : δk ∈ [0,∆]
}
. (5)

Here, the second equality follows by Assumptions 1 and 3.
With this set Jk, after receiving yk, we obtain an updated
estimation set Ik that now also considers the measurement yk
and can be defined by

Ik := I−k ∩ Jk. (6)

Since I−0 = Rn, (6) leads to I0 = J0. The estimation set I−k+1

at the next time x((k+1)T ) is constructed from Ik using the
model (1) and is given by

I−k+1=

{
eATxk+

∫ (k+1)T

kT

eA((k+1)T−τ)Bu(τ)dτ : xk ∈ Ik

}
.

(7)

The set Ik defined in (6) is a tight estimation set of x(kT ) in
the following sense: For every xk ∈ Ik, there exists a trajectory
for the state x(t), t ∈ [0, kT +∆], that produces y0, y1, . . . , yk
with possible delays {δi ∈ [0,∆]}ki=0 and satisfies x(kT ) =
xk. We formally define tightness of an estimation set below.

Definition 1: An estimation set Ik ⊂ Rn of x(kT ), which is
constructed from I−0 , u(t), t ∈ [0, kT+∆], and y0, y1, . . . , yk,
is said to be tight if for every xk ∈ Ik, there exist x0 ∈ I−0
and {δi ∈ [0,∆]}ki=0, such that

eAkTx0 +

∫ kT

0

eA(kT−τ)Bu(τ)dτ = xk, (8)

eA(iT+δi)x0 +

∫ iT+δi

0

eA(iT+δi−τ)Bu(τ)dτ = yi,

∀i ∈ {0, 1, . . . , k}. (9)

The following result is a direct consequence of the construc-
tion outlined above for estimation sets.

Proposition 1: The estimation set Ik defined in (6) is tight
in the sense of Definition 1.

IV. STABILIZABILITY WITH INFINITE BIT-RATE

We start with the case where (1) is a process with a scalar-
valued state and derive a tight bound on the maximum offset
∆ for stabilizability. We then show that for a process with a
vector-valued state case, clock offsets do not necessarily limit
stabilizability.

We employ the following stabilizability definition.
Definition 2: The plant (1) is stabilizable if for any sequence

of offsets {δk}∞k=0, δk ∈ [0,∆], and any initial state x(0) ∈
I−0 , there exists a feedback controller such that the closed-loop
state converges to the origin, i.e., limt→∞ x(t) = 0.

A. Process with a scalar-valued state

Consider the following controllable, unstable process where
the state is scalar:

ẋ(t) = λx(t) + bu(t). (10)

From controllability in Assumption 1, we assume without loss
of generality that b = 1 and, from instability, that λ > 0.

Theorem 1: Let Assumptions 1–3 hold. Then the plant (10)
is stabilizable in the sense of Definition 2 if and only if the
bound on the offset satisfies 0 ≤ ∆ < ∆, where

∆ :=

{
T if 0 < T ≤ 1

λ ln 3,

T − 1
λ ln(eλT − 2) if T > 1

λ ln 3.
(11)

The bound T − {ln(eλT − 2)}/λ in the lower branch of
(11) is monotonically decreasing with respect to λ and T . This
observation is consistent with the intuition that a larger growth
rate eλT during one sampling period will result in a tighter
requirement on the clock accuracy. The limitation ∆ = T for
the case 0 < T < (ln 3)/λ arises directly from Assumption
2. Fig. 3 shows the value of ∆ versus the sampling period T
for the plant (10) with λ = 1.0.

Remark 2: In [30, Theorem 14], a bound on clock offsets
for stabilizability of a first-order system has also been given.
Although the setup is slightly different from the present paper,
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Fig. 3: Upper bound on ∆ versus sampling period T (λ = 1.0):
The solid line is the active bound ∆ and the vertical dotted
lines indicate T = (ln 2)/λ (left) and T = (ln 3)/λ (right),
respectively.

it is worth noticing that both bounds decay exponentially with
respect to the period T . In [30], the offsets are assumed to
be static and the controller is taken as LTI. Thus, Theorem 1
provides the limitation compatible for a more general setup.

Our approach to prove Theorem 1 is based on the analysis
of the estimation sets introduced in Section III. For the plant
(10), by (5), the estimation set Jk computed from yk can be
written as

Jk =
{

e−λδk
(
yk + λ−1uk

)
− λ−1uk : δk ∈ [0,∆]

}
. (12)

Thus, Jk becomes a bounded interval in R. Therefore, with (6)
and (7), Ik and I−k+1, k ∈ Z+, also result in bounded intervals
in R. Notice that we have assumed I−0 = R.

Let lk be the length of the interval Ik, which is the updated
estimation set of x(kT ) defined in (6). In the following, we
study whether or not lk → 0 from which we will be able to
conclude stabilizability. Suppose that Ik−1 is obtained based
on y0, y1, . . . , yk−1 at t = (k − 1)T + ∆. Then, one can
compute I−k from (7). The length lk is determined by I−k
and Jk, thus lk depends on the true state xk ∈ I−k , the jitter
δk ∈ [0,∆], and the input u(t), t ∈ ((k − 1)T + ∆, kT ). To
prove that we are able to stabilize the closed loop for all pos-
sible xk and δk, we have to consider the worst case trajectory.
Hence, we need to determine under which conditions we have

min
u(t),t∈((k−1)T+∆,kT )

max
xk∈I−

k ,δk∈[0,∆]
lk ̸→ 0 as k → ∞,

from which we would conclude that no controller could result
in a decrease of the interval Ik to a single point and therefore
that there are trajectories for which xk does not converge. The
following lemma is the key technical result needed to prove
Theorem 1 as it gives the expansion rate of lk.

State 

Time 

(a) (b) (c) 

Fig. 4: Update procedure of the estimation set: (a) The
initial estimation set Ĩ−k expands during the sensing interval
[kT, kT +∆]; (b) After receiving ỹk, the controller computes
the set J̃k of the candidates of the state at kT which may result
in ỹk somewhere in [kT, kT +∆]; (c) The updated estimation
set Ĩk is obtained as the intersection of Ĩ−k and J̃k.

Lemma 1: Given an estimation set Ik−1 with width lk−1,
for every k ≥ 1, it follows that

min
u(t),t∈((k−1)T+∆,kT )

max
xk∈I−

k ,δk∈[0,∆]
lk=

(1− e−λ∆)eλT

2
lk−1,

(13)

where the minimum is achieved with any input that places
the interval

{
xk + λ−1uk : xk ∈ I−k

}
symmetrically about the

origin.
Proof: For simplicity of notation, we first introduce biased

sets as follows: Define ỹk := yk + λ−1uk and let J̃k := {x+
λ−1uk : x ∈ Jk}. Then, from (12), this biased estimation set
J̃k can be simply represented as

J̃k =


[
e−λ∆ỹk, ỹk

]
if ỹk > 0,

{0} if ỹk = 0,[
ỹk, e−λ∆ỹk

]
if ỹk < 0.

(14)

Similarly, we define the biased sets

Ĩ−k :=
{
xk + λ−1uk : xk ∈ I−k

}
,

Ĩk := Ĩ−k ∩ J̃k =
{
xk + λ−1uk : xk ∈ Ik

}
.

Note that the length lk of Ik is the same as that of Ĩk and the
analysis in this proof holds for any bias λ−1uk. In Fig. 4, we
illustrate the update procedure for the estimation set.

We now show that the input u(t), t ∈ ((k− 1)T +∆, kT ),
achieving the minimum in (13) is the one that makes Ĩ−k
symmetric about the origin. In what follows, we evaluate the
worst case length maxxk,δk lk for a given Ĩ−k . We start by
describing the range of yk under the knowledge that xk ∈ I−k
and δk ∈ [0,∆]. With (4), the set of all possible yk is as
follows:

yk ∈
{

eλδkxk + λ−1(eλδk − 1)uk : xk ∈ I−k , δk ∈ [0,∆]
}
,

which results in

ỹk ∈
{

eλδkz : δk ∈ [0,∆], z ∈ Ĩ−k

}
. (15)

Thus, we can rewrite the maximization term in (13) as

max
xk∈I−

k ,δk∈[0,∆]
lk = max

ỹk∈{eλδkz:δk∈[0,∆],z∈Ĩ−
k }

lk.
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Next, we evaluate maxỹk
lk for each variation of Ĩ−k , and

then compute its minimum over u(t), t ∈ ((k−1)T +∆, kT ).
In the rest of the proof, we assume ỹk ̸= 0 since it follows
from (14) that ỹk = 0 does not maximize lk. Denote the lower
bound and the upper bound of Ĩ−k by p and q, respectively:
Ĩ−k = [p, q]. Suppose that

|p| ≤ |q|, (16)

i.e., the midpoint of Ĩ−k is nonnegative. For the case |p| > |q|,
one can apply the same discussion below by flipping signs.

Consider the following two cases.
(i) p ≤ 0: In this case, it follows that q ≥ 0 from (16) and

thus, Ĩ−k contains the origin. By (14), we have

Ĩk =

{[
e−λ∆ỹk,min(q, ỹk)

]
if ỹk > 0,[

max(p, ỹk), e−λ∆ỹk
]

if ỹk < 0.

Taking maximums in both cases ỹk > 0 and ỹk < 0, and using
(16), one can see that the length lk is maximum when ỹk = q

max
ỹk∈{eλδkz:δk∈[0,∆],z∈Ĩ−

k }
lk = (1− e−λ∆)q.

The right-hand side takes its minimum under (16) and (i) for
the case in which q = −p = eλT lk−1/2, and the minimum is

min
u(t),t∈((k−1)T+∆,kT )

max
xk∈I−

k ,δk∈[0,∆]
lk=(1− e−λ∆)

eλT

2
lk−1.

(17)

(ii) p > 0: In this case, noticing that all possible ỹk are
positive from (15), we obtain

Ĩk =
[
max(p, e−λ∆ỹk),min(q, ỹk)

]
.

Therefore,

max
ỹk∈{eλδkz:δk∈[0,∆],z∈Ĩ−

k }
lk =

{
(1− e−λ∆)q if e−λ∆q ≥ p,

q − p if e−λ∆q < p.

(18)

From the condition (ii) and (7), we have q > q−p = eλT lk−1.
Thus, both branches in (18) are greater than the right-hand side
of (17). Hence, Ĩ−k satisfying (ii) cannot minimize maxỹk

lk,
which concludes the proof of Lemma 1.

Proof of Theorem 1: (Sufficiency) If ∆ < ∆, then we
have that γ := (1− e−λ∆)eλT /2 < 1. Thus, from Lemma 1,
for a given estimation set Ik−1 of x((k − 1)T ), there exists
a control input resulting in lk < γlk−1 for all δk and xk−1 ∈
Ik−1. Such control input can be constructed as follows: Divide
the interval ((k−1)T +∆, kT ) into two parts of equal length.
In the first time period, the controller applies a constant input
which makes I−k symmetric about λ−1uk. As we see in the
proof of Lemma 1, this control input minimizes maxxk,δk lk,
which is the length of the estimation set Ik in the worst case.
In the second time period, the control input is simply set to
0. This control input satisfies Assumption 3 and simplifies the
calculation of the estimation set Jk given by (5). Repeating
this procedure for each sampling period, we can make the
sequence lk converge to 0, which implies the stability of the
feedback system.
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(a) ∆ = 0.30 < ∆ ≈ 0.32
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(b) ∆ = 0.45 > ∆ ≈ 0.32

Fig. 5: Behavior of the system (λ = 1.0, T = 2.0, ∆ ≈
0.32): The plant state x(t) (solid), the input u(t) (dashed), the
observations yk (cross), and the estimation sets Ik (△: upper
bounds, ▽: lower bounds).

(Necessity) When γ := (1−e−λ∆)eλT /2 ≥ 1, the sequence
lk does not converge to zero, no matter how we choose u(t).
This means that there always exist a positive constant ϵ and a
sequence of integers k1, k2, . . . such that lki ≥ ϵ, ∀i. Since Ik
is a tight estimation set, this means that there exists a possible
trajectory of x(t) such that |x(tki)| ≥ ϵ/2, ∀i and therefore
x(t) does not converge to zero.

We now present a numerical example to illustrate the
behavior of the system.

Example 1: Consider the system (10) with λ = 1.0 and the
nominal sampling period T = 2.0. The initial state is taken
to be x(0) = 1 and the δk are chosen uniformly randomly
from [0,∆]. We employ the control law mentioned in the
proof of Theorem 1, which minimizes the length of the worst
case estimation set. We first consider the case of a small
offset bound that satisfies the stability condition in Theorem
1: suppose ∆ = 0.30, which is less than ∆ ≈ 0.32. In Fig. 5a,
we illustrate the state x(t) and the input u(t) by the solid line
and the dashed line, respectively. Moreover, the observations
yk are depicted by the cross marks and the upper and lower
bounds of the estimation sets Ik are represented by △ and
▽, respectively. One can observe that, as time progresses, the
upper bounds and the lower bounds of Ik become closer, and
the state successfully converges to 0. Next, we consider the
case ∆ = 0.45, which violates the stability limit ∆ ≈ 0.32.
Fig. 5b shows the behavior of the system in this case. We see
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that the state (solid line) oscillates and the estimation set Ik
(triangle marks) does not shrink to a single point.

B. Process with a vector-valued state

In this section, we consider plants where A is not scalar.
Theorem 2: Let Assumptions 1–3 hold. If A has at least two

distinct eigenvalues, then for any ∆ satisfying (2), the plant
(1) is stabilizable in the sense of Definition 2 and the state
can be taken to the origin in a finite time.

Theorem 2 follows from the lemma below and the control-
lability of the system.

Lemma 2: If A has at least two distinct eigenvalues, then
for any initial state and for any ∆ satisfying (2), there exists
a control input such that the state of (1) can be reconstructed
precisely with a finite number of measurements.

Proof: See Section IV-C.
In view of Theorem 2, and unlike in the scalar case, there is

no practical limitation on the clock offset if the plant dynamics
has two distinct eigenvalues. Intuitively, we can explain this
result as follows: At the time after receiving the measurement
yk = x(kT + δk), the controller has n + k + 1 unknown
variables, i.e., x(0) and δ0, . . . , δk. On the other hand, the
measurements y0, y1, . . . , yk provide 2(k + 1) equations that
constrain these unknowns. If these equations were linear and
independent, then one could determine the exact state in k
steps as soon as 2(k+1) ≥ n+ k+1. In reality they are not,
but when A has two distinct eigenvalues, using an appropriate
input signal u(t) they provide enough “independence” to re-
cover the initial state. Moreover, since the plant is controllable,
once its state is precisely known, there exists an input that
drives the state to the origin in a finite time interval.

We now show an example where I1 becomes a single point.
In this example, we can make the state converge to zero using
only two observations y0 and y1.

Example 2: Consider the following system:

A =

[
2 0
0 1

]
, B =

[
1
1

]
, T = 1.5, ∆ = 1.0.

Notice that ∆ is greater than the bound (11) in the scalar
case for each eigenvalue, 2 and 1, of A since T −{
ln(e2T − 2)

}
/2 ≈ 0.052 and T − ln(eT − 2) ≈ 0.59. In

Fig. 6, we plot the estimation sets I0, I−1 , and J1 computed
based on y0 and y1 in the state space R2. Since we assume
I−0 = R2, I0 is equal to J0. Note that the unknown states
x(0) and x(T ) are not used to compute the estimation sets.
The figure shows that I−1 ∩ J1 = I1, which contains a single
possible value for x(T ).

C. Proof of Lemma 2

As a preliminary of the proof, we first introduce a subsystem
of (1) associated with the two distinct eigenvalues. If there
exist eigenvalues λ1, λ2 ∈ R of A such that λ1 ̸= λ2, via an
appropriate coordinate transformation, we have

V −1ẋ(t) =

 λ1 0 0
0 λ2 0
∗ ∗ ∗

V −1x(t) + V −1Bu(t),

−70 −60 −50 −40 −30 −20 −10 0
0.5
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2.5
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3.5
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4.5
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x(T )

x(0)

y1

J1I−1

I0

y0

Fig. 6: Estimation sets I0, I−1 , and J1 in the state space
R2 (horizontal axis: first element of x, vertical axis: second
element of x).

for some nonsingular matrix V ∈ Rn×n; otherwise there exist
λ, θ ∈ R with θ ̸= 0 such that the complex conjugate pair
λ + iθ, λ − iθ are eigenvalues of A, and via an appropriate
coordinate transformation, we have

V −1ẋ(t) =

 λ θ 0
−θ λ 0
∗ ∗ ∗

V −1x(t) + V −1Bu(t),

for some nonsingular matrix V ∈ Rn×n [35, pp. 152–153].
Extracting the first two rows of the above system, we obtain
the subsystem

ξ̇(t) = Λξ(t) + ν(t), ζk = ξ(kT + δk), (19)

where ξ and ν are the corresponding states and the inputs,
respectively, and ζk is the output, i.e., the first two elements of
V −1yk. For the case of two distinct real eigenvalues λ1, λ2, the
matrix Λ := diag(λ1, λ2); for the case of a complex conjugate
pair of eigenvalues λ+ iθ, λ− iθ, the matrix

Λ :=

[
λ θ
−θ λ

]
.

For the first step of the proof, we compute estimation sets
for the state ξ(kT ) based on the measurements y0, . . . , yk.
Instead of the estimation sets of x represented by Jk, Ik, and
I−k+1, which are defined in (5)–(7), we denote the correspond-
ing estimation sets of ξ by Ĵk, Îk, and Î−k+1. In light of I0 = J0
and (7), the estimation set Î−1 of ξ(T ) is expressed as

Î−1 =
{

e−Λδ0 â0 + b̂0 : δ0 ∈ [0,∆]
}
.

Here, â0 and b̂0 are defined as follows: Let νk be the first two
elements of V −1Buk. Then, â0 and b̂0 are defined as

â0 := eΛT (ζ0 + Λ−1ν0),

b̂0 := −eΛTΛ−1ν0 +

∫ T

0

eΛ(T−τ)ν(τ)dτ. (20)
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Note that Λ is nonsingular since A is invertible. Moreover, by
(5), it follows that

Ĵ1 =
{

e−Λδ1 â1 + b̂1 : δ1 ∈ [0,∆]
}
,

where

â1 := ζ1 + Λ−1ν1, b̂1 := −Λ−1ν1. (21)

1) Finiteness of Î1: The first step of the proof is to show
that there exists a control input ν(t), t ∈ [0, T + ∆], that
makes the updated estimation set Î1 = Î−1 ∩ Ĵ1 contain at
most a finite number of points. To do so, we need to consider
the following problem: Let a, b, and c be nonzero vectors in
R2; also fix [T1, T2] ⊂ R and [T3, T4] ⊂ R. Define functions
f : [T1, T2] → R2 and g : [T3, T4] → R2 as

f(t) := eΛta, g(t) := eΛtb+ c (22)

and find the intersection of {f(t) : t ∈ [T1, T2]} and
{g(t) : t ∈ [T3, T4]}. The following lemma states that this
intersection can be a set of finite points if a, b, and c are
chosen appropriately.

Lemma 3: If at least one of the vectors a, b, and c is not
an eigenvector of Λ, then the intersection of the sets F :=
{f(t) : t ∈ [T1, T2]} and G := {g(t) : t ∈ [T3, T4]} contains,
at most, a finite number of points.

Proof: See Section IV-D.
Consider the statement of Lemma 3 with a = â0, b = â1,

and c = b̂0 − b̂1. Then, Î1 corresponds to the intersection of
F and G. Note that â0 and â1 can be assumed to be nonzero
since if either â0 = 0 or â1 = 0, then Î−1 or Ĵ1 becomes a
single point, and the result is trivially true.

In what follows, we show that there exists an input such
that b̂0− b̂1 is not equal to 0 nor is an eigenvector of Λ. From
Assumption 3, ν(t) takes a constant value ν0 for t ∈ [0,∆],
thus it follows from (20) and (21) that

b̂0 − b̂1 = −Λ−1eΛ(T−∆)ν0 +

∫ T

∆

eΛ(T−τ)ν(τ)dτ + Λ−1ν1.

Note that the first and the third terms in the right-hand side are
known to the controller. Furthermore, the integral term is the
zero-state-response of (19). Because of the controllability of
the original system (1), x(kT ) or ξ(kT ) can be set arbitrarily,
and hence b̂0− b̂1 can be made an arbitrary vector by selecting
an appropriate input ν(t), t ∈ (∆, T ). Thus, with an input ν(t)
such that b̂0 − b̂1 is not 0 nor an eigenvector of Λ, it follows
from Lemma 3 that Î1 becomes a set of finite points.

2) Stabilizing the system with the finite set Î1: The sec-
ond step of the proof consists of providing a procedure to
determine the value of the state once Î1 contains only a finite
number of points and bring it to the origin. Consider the
subsystem (19) of (1). From the first step, we can pick the
control signal so that Î1 is a set with a finite number of points.
For each element of Î1, we can determine corresponding δ1
and x(2T ) as follows. Pick a point ξ1 ∈ Î1. From (19), we
have that

ζ1 = eΛδ1ξ1 +

∫ δ1

0

eΛ(δ1−τ)ν(τ + T )dτ

= eΛδ1
(
ξ1 + Λ−1ν1

)
− Λ−1ν1.

Thus, if ξ1 ̸= −Λ−1ν1, δ1 is uniquely determined from
variables known to the controller. When ξ1 = −Λ−1ν1, we
select the input so that ξ2 := eΛT ξ1 +

∫ T

0
eΛ(T−τ)ν(τ +T )dτ

satisfies ξ2 ̸= −Λ−1ν2, which is always possible in view of
controllability. In this case, the set Î2 would continue to be
finite, and we would be able to determine the corresponding
δ2 using a similar procedure. For simplicity, in the remainder
of the proof we shall assume that we have determined δ1, but
the reasoning would be similar if we had δ2 instead. For the
value of δ1 so obtained, we can compute x(T ) by solving

y1 = eATx(T ) +

∫ δ1

0

eA(δ1−τ)Bu(τ + T )dτ

and can compute x(2T ) using the variation of constants
formula. From controllability, the controller can bring this
point x(2T ) to the origin by an appropriate open-loop input
u(t) for t ∈ (2T +∆, 3T ). The next output y3 takes a nonzero
value only if the selected point ξ1 that we used to estimate
x(2T ) does not correspond to the true state trajectory. Hence,
we reduce the number of elements of Îk at least by one element
in one sampling interval (or two periods, in case we had to
consider δ2). Repeating this procedure, we eventually obtain
yk = 0, which means that the origin has been reached.

D. Proof of Lemma 3

The proof of Lemma 3 is based on the following corollary
of the mean-value theorem.

Corollary 1: Consider two continuous functions τ1, τ2 :
S → R defined on a finite interval S ⊂ R. Suppose there
are two distinct points s1, s2 ∈ S such that

τ1(s1)− τ2(s1) = τ1(s2)− τ2(s2)

and τ1, τ2 are differentiable in (s1, s2). Then there exists a
point s∗ ∈ (s1, s2) such that the derivatives

τ ′1(s
∗) = τ ′2(s

∗).

Proof: Define the function ∆τ : S → R by ∆τ (s) :=
τ1(s) − τ2(s). Then ∆τ (s1) = ∆τ (s2). Following the mean-
value theorem, there exists s∗ ∈ (s1, s2) such that

τ ′1(s
∗)− τ ′2(s

∗) = ∆′
τ (s

∗) =
∆τ (s2)−∆τ (s1)

s2 − s1
= 0.

Define the set

U := {(t, s) ∈ [T1, T2]× [T3, T4] : f(t) = g(s)}. (23)

Then F ∩ G is infinite only if U is infinite. In the following,
we assume that U is infinite and prove the claim of Lemma 3
by contradiction.

1) The case of two distinct real eigenvalues: From invert-
ibility in Assumption 1, we assume without loss of generality
that λ1 and λ2 are both nonzero. Denote

a =

[
a1
a2

]
, b =

[
b1
b2

]
, c =

[
c1
c2

]
with scalars a1, a2, b1, b2, c1, c2 ∈ R. From

eΛt =

[
eλ1t 0
0 eλ2t

]
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it follows that

f(t) =

[
a1e

λ1t

a2e
λ2t

]
, g(t) =

[
b1e

λ1t + c1
b2e

λ2t + c2

]
.

For the set U defined by (23), (t, s) ∈ U if and only if

a1eλ1t = b1eλ1s + c1, a2eλ2t = b2eλ2s + c2. (24)

In the following, we transform (24) into two formulas for
t in terms of s, and show that there are only a finite number
of points where their values are equal.

First, we show that the scalars a1, a2, b1, and b2 are all
nonzero. Suppose there exists an i ∈ {1, 2} such that ai = 0.

• If bi = 0, then ci ̸= 0 (otherwise the vectors a, b, and
c are all eigenvectors of Λ). Thus (24) implies that U is
empty, which contradicts the assumption that it is infinite.

• If bi ̸= 0, then (t, s) ∈ U only if bici < 0 and

s =
1

λi
ln

(
− ci

bi

)
.

Thus U is a singleton, which contradicts the assumption
that it is infinite.

Hence a1 and a2 are both nonzero. The scalars b1 and b2 are
both nonzero for similar reasons.

Second, we discard some subsets of [T3, T4] where (24)
cannot hold. Let f̄0 := min{eλ1t, eλ2t : t ∈ [T1, T2]} > 0.
Define the functions ḡ1, ḡ2 : [T3, T4] → R as

ḡi(s) :=
bieλis + ci

ai
, i = 1, 2,

and the sets S1,S2 ⊂ [T3, T4] as

Si := {s ∈ [T3, T4] : ḡi(s) ≥ f̄0}, i = 1, 2.

As ḡ1 and ḡ2 are both monotonic functions, the sets S1 and
S2 are both finite intervals on R. Hence their intersection

S := S1 ∩ S2 ⊂ [T3, T4]

is also a finite interval on R. Following (24), (t, s) ∈ U only
if s ∈ S, since otherwise there exits an i ∈ {1, 2} such that

bieλis + ci
ai

= ḡi(s) < f̄0 ≤ eλit ∀t ∈ [T1, T2].

Finally, define the functions τ1, τ2 : S → R by

τi(s) :=
1

λi
ln

(
bieλis + ci

ai

)
, i = 1, 2.

Note that for both i ∈ {1, 2},

bieλis + ci
ai

= ḡi(s) ≥ f̄0 > 0 ∀s ∈ S.

Hence τ1 and τ2 are both well-defined and continuous on S.
Also, they are both differentiable on the interior of S, and
their derivatives are given by

τ ′i(s) =
bieλis

bieλis + ci
, i = 1, 2.

Following (24), (t, s) ∈ U only if τ1(s) = τ2(s). Suppose
there are two distinct points s1, s2 ∈ S such that τ1(s1) =

τ2(s1) and τ1(s2) = τ2(s2). By Corollary 1, there exists a
point s∗ ∈ (s1, s2) such that τ ′1(s

∗) = τ ′2(s
∗), that is,

b1c2eλ1s
∗
= b2c1eλ2s

∗
.

As b1 and b2 are both nonzero, and c1 and c2 are not both
zero, the previous equality holds if only if b1b2c1c2 > 0, and

s∗ =
1

λ1 − λ2
ln

(
b2c1
b1c2

)
. (25)

We have thus shown that given any two points s1, s2 in the
set V := {s ∈ S : τ1(s) = τ2(s)} the point s∗ defined by
(25) must be between those two points. This automatically
excludes the possibility of V having three or more points, by
a contradiction argument. Consequently, there are at most two
points in U , which contradicts the assumption that it is infinite.
Therefore, F ∩G is finite, that is, the claim of Lemma 3 holds
for the case of two distinct real eigenvalues.

2) The case of a complex conjugate pair of eigenvalues:
Denote

a =

[
â cosα
â sinα

]
, b =

[
b̂ cosβ

b̂ sinβ

]
, c =

[
ĉ cos γ
ĉ sin γ

]
with scalars â, b̂, ĉ > 0 and α, β, γ ∈ [0, 2π). From

eΛt =

[
eλt cos(θt) eλt sin(θt)
−eλt sin(θt) eλt cos(θt)

]
.

it follows that

f(t) =

[
âeλt cos(α− θt)
âeλt sin(α− θt)

]
,

g(t) =

[
b̂eλt cos(β − θt) + ĉ cos γ

b̂eλt sin(β − θt) + ĉ sin γ

]
.

For brevity, denote

r1(s) := b̂eλs sin(β − θs) + ĉ sin γ,

r2(s) := b̂eλs cos(β − θs) + ĉ cos γ.
(26)

For the set U defined by (23), (t, s) ∈ U if and only if

â2e2λt = r1(s)
2 + r2(s)

2,

tan(α− θt) = r1(s)/r2(s).
(27)

Consider the special case that λ = 0 (namely, a conjugate
pair of purely imaginary eigenvalues). Then the first equation
in (27) becomes

â2 = b̂2 + 2b̂ĉ cos(β − γ − θs) + ĉ2.

As â, b̂, ĉ > 0, the previous equality may hold for only a
finite number of points on the finite interval [T3, T4], which
contradicts the assumption that U is infinite.

In the following, we transform (27) into two formulas for
t in terms of s (under the assumption that λ ̸= 0), and show
that there is only a finite number of points where their values
are equal.

First, based on the periodicity of the trigonometric functions
in (27), we divide the domains [T1, T2] and [T3, T4] into
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finitely many intervals. Define the sequences of finite intervals
(Tl)l∈Z and (S̄l)l∈Z as

Tl :=
[
α+ lπ

θ
− π

2|θ|
,
α+ lπ

θ
+

π

2|θ|

)
,

S̄l :=

(
β + lπ

θ
,
β + lπ

θ
+

π

|θ|

)
Then∪

l∈Z

Tl = R,
∪
l∈Z

S̄l = R\{s ∈ R : sin(β − θs) = 0}.

As [T1, T2] and [T3, T4] are both finite, there are only a finite
number of integers l1 and l2 such that [T1, T2] ∩ Tl1 ̸= ∅ and
[T3, T4]∩ S̄l2 ̸= ∅, respectively. Moreover, there are also only
a finite number of points in {s ∈ [T3, T4] : sin(β − θs) = 0}.

Second, we further divide the intervals in (S̄l)l∈Z by dis-
carding the points where r2 defined in (26) vanishes (to ensure
the continuity of the function τ2 below). As r2 is continuous
and monotonic on each S̄l, there is at most one point s′l ∈ S̄l

such that r2(s′l) = 0. If such a point exists then denote

S2l :=

(
β + lπ

θ
, s′l

)
, S2l+1 :=

(
s′l,

β + lπ

θ
+

π

|θ|

)
;

otherwise let
S2l := S2l+1 := S̄l.

Then (Sl)l∈Z is also a sequence of finite intervals. Again, as
[T3, T4] is finite, there are only a finite number of integers
l such that [T3, T4] ∩ Sl ̸= ∅. Therefore, if for each pair of
integers l and m, there are only a finite number of points
(t, s) ∈ Tl × Sm such that (27) holds, then U is also finite.

Finally, fix an arbitrary pair of integers l and m, and define
the functions τ1, τ2 : Sm → R by

τ1(s) :=
1

2λ
ln

(
r21(s) + r22(s)

â2

)
,

τ2(s) :=
1

θ

(
α+ lπ − arctan

(
r1(s)

r2(s)

))
.

As r1 and r2 are both differentiable and r2 is nonzero on Sm,
the functions τ1 and τ2 are both well-defined and differentiable
on Sm. Also, as the image of the arctangent function on R
is a subset of the interval (−π/2, π/2), the image of τ2 is a
subset of Tl. The derivatives of τ1 and τ2 are given by

τ ′1(s) =
b̂2e2λs + b̂ĉeλs cos(ϕ(s)) + b̂ĉeλs(θ/λ) sin(ϕ(s))

r21(s) + r22(s)
,

τ ′2(s) =
b̂2e2λs + b̂ĉeλs cos(ϕ(s))− b̂ĉeλs(λ/θ) sin(ϕ(s))

r21(s) + r22(s)
,

where
ϕ(s) := β − γ − θs.

For all (t, s) ∈ Tl × Sm, (27) holds only if τ1(s) = τ2(s).
Suppose there are two distinct points s1, s2 ∈ Sm such that
τ1(s1) = τ2(s1) and τ1(s2) = τ2(s2). By Corollary 1, there
exists a point s∗ ∈ (s1, s2) such that τ ′1(s

∗) = τ ′2(s
∗), that is,

sin(ϕ(s∗)) = sin(β − γ − θs∗) = 0. (28)

We have established that given any s1, s2 in the set Vm :=
{s ∈ Sm : τ1(s) = τ2(s)} the point s∗ satisfying (28) must

Plant	


Controller	


Sensor	


u(t)

x(t)

yk=x(kT+�k)

Quantizer	

Yk

Fig. 7: Feedback system with quantizer.

be between s1 and s2. However, (28) holds for at most one
point on Sm. Hence there are at most two distinct points in
Vm. Consequently, there are at most two points in Tl × Sm

such that (27) holds, which contradicts the assumption that U
is infinite (as explained in the second step above). Therefore,
F∩G is finite, that is, the claim of Lemma 3 holds for the case
of a complex conjugate pair of eigenvalues. This completes the
proof of Lemma 3.

V. PRELIMINARIES FOR THE CASE WITH QUANTIZATION

So far, we have assumed that real-valued vectors yk can
be transmitted from the sensor to the controller. However,
signals in networked control systems are often quantized to
discrete values because of the sensor’s limited capabilities
and/or finite capacity in the communication channels. In the
rest of the paper, we extend the setup in Section II to deal
with quantization.

Instead of the original feedback system in Fig. 1, consider
the system depicted in Fig. 7. The plant and controller are
the same as those in Section II, but the observed state yk ∈
Rn is quantized before being sent to the controller. We shall
consider static quantization laws that partition the state-space
Rn into a discrete family of sets and, at the kth sampling time
transmit a symbol r(yk) that represents the set to which yk
belongs. For simplicity of notation, we denote by Yk both the
symbol and the set corresponding to the measurement yk. In
the next section we present results for logarithmic and uniform
quantization sets.

In the quantization case, we impose the following assump-
tion instead of Assumption 3.

Assumption 4: The control input is zero during [kT, kT+∆]
for every k, i.e.,

uk = 0, ∀k ∈ Z+,

and u(t) does not depend on the future measurements {Yk :
kT +∆ ≥ t}.

Remark 3: Assumption 4 simplifies computing the effect of
the input uk during the sensing period [kT, kT+∆], while the
exact value of yk may not yet be known to the controller. This
assumption can be lifted if the quantizer knows the control law.

We now redefine the estimation set Jk in (5) to fit the
quantization setup:

Jk =
{

e−Aδk ŷk : δk ∈ [0,∆], ŷk ∈ Yk

}
. (29)

The estimation sets Ik and I−k+1 are defined as in (6) and (7)
respectively, but with Jk defined above instead of (5). Note
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that the estimation set Ik is also tight in the following sense,
which is a natural extension of Definition 1.

Definition 3: An estimation set Ik ⊂ Rn of x(kT ), which is
constructed from I−0 , u(t), t ∈ [0, kT+∆], and Y0, Y1, . . . , Yk,
is said to be tight if for every xk ∈ Ik, there exist x0 ∈ I−0 ,
{δi ∈ [0,∆]}ki=0, and {ŷi ∈ Yi}ki=0, such that

eAkTx0 +

∫ kT

0

eA(kT−τ)Bu(τ)dτ = xk,

eA(iT+δi)x0 +

∫ iT+δi

0

eA(iT+δi−τ)Bu(τ)dτ = ŷi,

∀i ∈ {0, 1, . . . , k}.

VI. STABILIZABILITY UNDER CLOCK OFFSETS AND
QUANTIZATION

A. Process with a scalar-valued state: Logarithmic quantizer

Consider the plant in (10). In this subsection, we employ
the logarithmic quantizer proposed in [23]: Given α0 > 0 and
ρ ∈ (0, 1), the quantizer r is given by Yk = r(yk), ∀k ∈ Z+,
with

r(y) =


(
ρi+1α0, ρ

iα0

]
if y > 0,

{0} if y = 0,[
−ρiα0,−ρi+1α0

)
if y < 0,

(30)

where i is the integer satisfying ρi+1α0 < |y| ≤ ρiα0.
Here, the ratio ρ expresses the coarseness of the logarithmic
quantizer; the quantization levels become fine as ρ → 1 and
become coarse as ρ → 0.

For the system given in Fig. 7 with this logarithmic quan-
tizer, the following theorem gives a necessary condition and
a sufficient condition for stability, expressed in terms of the
parameter ρ that defines the coarseness of the quantizer.

Theorem 3: Let Assumptions 1, 2, and 4 hold. Consider
the feedback system in Fig. 7 with the plant (10) and the
logarithmic quantizer (30). If the system is stabilizable in the
sense of Definition 2, then

ρ ∈

{
(0, 1) if eλT ≤ 2,(
max

{
0, eλ∆ − 1

eλT /2−1

}
, 1
)

if eλT > 2.
(31)

On the other hand, the feedback system is stabilizable if

ρ ∈
(
max

{
0, eλ∆

(
1− 1

eλT /2

)}
, 1

)
. (32)

We illustrate the bounds on the coarseness ρ given in (31)
and (32) through an example.

Example 3: Consider the plant (10) with λ = 1.0 and fix
the nominal sampling interval as T = 1.5. In Fig. 8, we plot
the necessary lower bound on ρ for stabilizability given by
(31) and the sufficient bound given by (32). The dash-dot
line represents the maximum clock offset tolerable for stability
∆ ≈ 0.59 without quantization given by Theorem 1. We see
that, as the clock offset ∆ approaches ∆, the ratio ρ of the
endpoints of a quantization cell goes to 1 and hence, very fine
quantization is needed for stabilizability.

The approach used to prove Theorem 3 also relies on
determining the length lk of the estimation set Ik and construct
upper and lower worst-case bounds for this length.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4
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0.8

1

Stabilizable

Not stabilizable

Fig. 8: Bounds on coarseness ρ of quantization for stabilizabil-
ity versus the maximum clock offsets ∆: the necessary condi-
tion in (31) (dashed), the sufficient condition in (32) (solid),
and the upper bound on the clock offset for stabilizability in
(11) (dash-dot).

Lemma 4: Consider the feedback system in Fig. 7 with
the plant (10) and a logarithmic quantizer (30). Given an
estimation set Ik−1 of width lk−1, k ≥ 1, the worst-case width
lk of Ik satisfies the following upper and lower bounds:

1− ρe−λ∆

1 + (1− ρ)e−λ∆

eλT

2
lk−1 ≤ min

u(t),
t∈((k−1)T+∆,kT )

max
xk∈I−

k ,δk∈[0,∆]
lk

≤
(
1− ρe−λ∆

) eλT

2
lk−1, (33)

where the second inequality holds when the control input
places I−k symmetrically about the origin.

Proof: Let p and q denote the lower bound and the
upper bound for I−k , respectively, i.e., p := infξ∈I−

k
ξ and

q := supξ∈I−
k
ξ. Assume that

|q| ≥ |p|, (34)

that is, the center of I−k is nonnegative. If this is not the
case, the analysis below can be adapted by flipping signs and
replacing q with p.

As we discussed in the proof of Lemma 1, the min-max of
lk in (33) can be computed by finding the largest lk, as we
ranging over all possible quantized outputs Yk. To obtain an
explicit formula of maxYk

lk, we consider the following two
cases.

(i) p ≤ 0 < q: From (4), the set of possible Yk compatible
with xk ∈ I−k and δk ∈ [0,∆] is given by Yk ∈ Y−∪{0}∪Y+,
where Y− and Y+ are defined as

Y− :=

[
−ρiα0,−ρi+1α0

)
: i ≥

 ln eλ∆|p|
α0

ln ρ

, i ∈ Z

 ,

Y+ :=

(
ρi+1α0, ρ

iα0

]
: i ≥

 ln eλ∆q
α0

ln ρ

, i ∈ Z

 .

We note that the interval (ρi+1α0, ρ
iα0], i = ⌊ln y

α0
/ ln ρ⌋, is

the quantization cell that contains y > 0, i.e., ρi+1α0 < y ≤
ρiα0.
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In what follows, we evaluate maxYk
lk on each subset {0},

Y+, and Y− to describe maxYk∈Y−∪{0}∪Y+ lk. If Yk = {0},
we have Ik = {0} and hence lk = 0. Next, suppose that
Yk ∈ Y+. Then, from (29), the estimation set Jk is given by

Jk =
(
e−λ∆ρi+1α0, ρ

iα0

]
, i ≥

 ln eλ∆q
α0

ln ρ

, i ∈ Z,

where, i represents the index of a quantization cell. Taking the
intersection of Jk and I−k , which is bounded by q from above,
we have

lk =

{
q − e−λ∆ρi+1α0 if ρiα0 ≥ q,(
1− e−λ∆ρ

)
ρiα0 if ρiα0 < q.

Let us consider the maximum of lk over i . If ρiα0 ≥ q,
i.e., i ≤ ln q

α0
/ ln ρ, then lk is increasing with i, and hence

the maximum in this case occurs when i = ⌊ln q
α0

/ ln ρ⌋.
If ρiα0 < q, or i > ln q

α0
/ ln ρ, since lk is decreasing for

this case, the maximum occurs when i = ⌊ln q
α0

/ ln ρ⌋ + 1.
Therefore, we have that

max
Yk∈Y+

lk = max
{
q − e−λ∆

¯
q,

(
1− e−λ∆ρ

)
¯
q
}
, (35)

where
¯
q := ρ⌊ln

q
α0

/ ln ρ⌋+1α0, which is the infimum of the
quantization cell containing the upper bound q of I−k . For the
case Yk ∈ Y−, following the same discussion for Yk ∈ Y+,
we obtain

max
Yk∈Y−

lk = max
{
|p| − e−λ∆

¯
p,

(
1− e−λ∆ρ

)
¯
p
}
,

where
¯
p := ρ⌊ln

|p|
α0

/ ln ρ⌋+1α0. In view of (34), we have that
the maximum of lk over Yk ∈ Y− ∪ {0} ∪ Y+ is equal to the
right-hand side of (35).

(ii) 0 < p < q: The estimation sets Jk constructed from Yk

which are compatible with (ii) are given by

Jk=
(
e−λ∆ρi+1α0, ρ

iα0

]
,

ln eλ∆q
α0

ln ρ

≤ i ≤

⌊
ln p

α0

ln ρ

⌋
, i ∈ Z.

The maximum of lk over Yk can be obtained by following
the discussion above for the case Yk ∈ Y+ in (i). The only
difference is that, in the current case, the lower bound p of
I−k may be greater than that of Jk. This reasoning eventually
leads to

max
Yk

lk=

{
max

{
q − e−λ∆

¯
q,
(
1−e−λ∆ρ

)
¯
q
}

if p ≤ e−λ∆

¯
q,

q − p if p > e−λ∆

¯
q,

(36)

where
¯
q := ρ⌊ln

q
α0

/ ln ρ⌋+1α0, which is the same in (35). When
I−k lies far from the origin, and thus p > e−λ∆

¯
q, then there

exists a case that the estimation set Jk becomes a superset of
I−k for some Yk.

As the second step of the proof, we evaluate the minimum
of maxYk

lk obtained in (35) and (36) over the input u(t).
Note that u(t) changes the position of I−k with respect to
the origin. We first establish that minu(t) s.t. (ii) maxYk

lk ≥
minu(t) s.t. (i) maxYk

lk as follows. Let us compare (36) with

(35). If p ≤ e−λ∆

¯
q, then maxYk

lk takes the same form for
both cases (i) and (ii), and that is increasing with q. Since q in
the case (ii) cannot be smaller than that in (i), the claim is true.
Otherwise, if p < e−λ∆

¯
q, the right-hand side of (36) equals

q − p = eλT lk−1. This is greater than minu(t) s.t. (i) maxYk
lk

since it is possible to make minu(t) s.t. (i) maxYk
lk less than

or equal to eλT lk−1/2 with the input such that p = −q =
eλT lk−1/2.

From the above discussion, we have that it suffices to
consider the case (i) for the evaluation of minu(t) maxxk,δk lk
in (33). A simple calculation shows that the worst case length
maxYk

lk in (35) is bounded from below and above by the
following functions, both linear to q:

1− ρe−λ∆

1 + (1− ρ)e−λ∆
q ≤ max

{
q − e−λ∆

¯
q,

(
1− e−λ∆ρ

)
¯
q
}

≤
(
1− ρe−λ∆

)
q. (37)

Since both the lower bound and the upper bound in the above
are increasing with q, the bounds are minimized when q =
−p = eλT lk−1/2, which means that I−k is symmetric about
the origin. Substituting this into (37) leads to (33).

Proof of Theorem 3: (Sufficiency) If ρ satisfies (32),
then there exists a logarithmic quantizer resulting in (1 −
ρe−λ∆)eλT /2 < 1. Therefore, from Lemma 4, with the control
input which places I−k symmetrically about the origin, we can
make Ik narrower than the previous estimation set for any
x(0) ∈ I−0 and δk ∈ [0,∆]. Thus, repeating this procedure
for each sampling period, we can achieve lk → 0 as k → ∞,
which implies the stability of the feedback system.

(Necessity) When eλT ≤ 2, every ρ ∈ (0, 1) satisfies the
sufficient condition (32) and hence the system is stabilizable.
Consider the case of eλT > 2. Since Ik is a tight estimation set,
when the system is stabilizable, the length lk must converge to
0 for every x(0) and {δk}∞k=0. From Lemma 4, it is required
for the convergence of lk that

1− ρe−λ∆

1 + (1− ρ)e−λ∆

eλT

2
< 1.

The above inequality is equivalent to (31) when eλT > 2.

B. Process with a scalar-valued state: Uniform quantizer

In this subsection, we consider the infinite- and finite-range
uniform quantizers that divide the state space uniformly. Given
the width w ∈ (0,∞) of the quantization cells, the infinite-
rage uniform quantizer is defined by

r(y) = [iw, (i+ 1)w ) , (38)

where i is the integer such that iw ≤ y < (i+ 1)w.
Theorem 4: Let Assumptions 1, 2, and 4 hold. Consider the

feedback system in Fig. 7 with the plant (10) and the infinite-
range uniform quantizer (38). When 0 ≤ ∆ < ∆, with ∆
given by (11), there exists a feedback controller such that,
along solutions to the closed-loop, we have

lim sup
t→∞

|x(t)| ≤

{
0 if eλT < 2,
1
2

eλTw
1−(1−e−λ∆)eλT /2

if eλT ≥ 2,
(39)
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for every initial condition x(0) ∈ R and sampling offsets
{δk ∈ [0,∆]}∞k=0.

Furthermore, if

eλT ≥ 2

1− e−λ∆ (1− e−λ∆)
, (40)

then for any causal control law satisfying the setup in Section
V, there exist an initial condition x(0) ∈ R and a sequence
{δk ∈ [0,∆]}∞k=0 such that

lim sup
t→∞

|x(t)| ≥ 1

2

eλ(T−∆)w

1− (1− e−λ∆) eλT /2
. (41)

Remark 4: We can see from (39) that for any ∆ ∈ [0,∆),
the uniform quantizer leads to a bounded solution, regardless
of the width w of the quantizations, but with the caveat that the
upper bound in the lower branch of (39) increases as both w
and ∆ increase. We also see from (39) that asymptotic stability
is possible provided that eλT < 2, but for larger values of eλT

the state x(t) may not converge to zero. In particular, when
eλT exceeds the bound in (40), we can conclude from (41) that
x(t) will surely not converge to zero for some initial conditions
and δk sequences.

Before we turn to the proof of Theorem 4, we study a more
realistic scenario in which the quantizer’s input range is a finite
interval that does not cover the entire state space R. Let us
consider a finite-range quantizer that partitions (−σ, σ), σ > 0,
into an even number N cells of the same width w = 2σ/N
and is defined by Yk = r(yk), ∀k ∈ Z+, with

r(y) =


[⌊

y
w

⌋
w,

⌊
y
w + 1

⌋
w
)

if − σ + w ≤ y < σ,

(−σ,−σ + w) if − σ < y < −σ + w,

∅ else.
(42)

With the use of the finite-range quantizer (42), global
stabilizability (as defined in Section IV) is not possible, so
the control objective must be relaxed to containability, which
has been studied in [36].

Definition 4: The feedback system in Fig. 7 with the N -level
quantizer (42) is containable if for any sphere S centered at the
origin, there exist an open neighborhood M of the origin and
a feedback control law such that if x(0) ∈ M then x(t) ∈ S
for all t ≥ 0.

Theorem 5: Let Assumptions 1, 2, and 4 hold. Consider the
feedback system in Fig. 7 with the plant (10) and the uniform
quantizer (42). The feedback system is containable if eλT < 2
or

0 ≤ ∆ < ∆, N >
eλT

1− (1− e−λ∆)eλT /2
, (43)

where ∆ is given in (11).
Conversely, if the systems is containable and (40) holds,

then it follows that

0 ≤ ∆ < ∆, N >
eλ(T−∆)

1− (1− e−λ∆)eλT /2
. (44)

The following example illustrates this result.
Example 4: Consider the plant (10) with λ = 1.0 and fix

the nominal sampling interval as T = 1.5. Fig. 9 shows

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

Containable

Not containable

Fig. 9: Base-2 logarithms of the bounds of the number N of
quantization cells versus the maximum clock offsets ∆: the
sufficient condition in (43) (solid), the necessary condition in
(44) (dashed), and the upper bound on the clock offset for
stabilizability in (11) (dash-dot).

the sufficient bound on N in (43) and the necessary bound
in (44) for containability. The vertical axis is log2 N , which
corresponds to the number of bits needed to send one of N
symbols. From the figure, we see that for a clock offset larger
than ∆ (i.e., on the right side of the dash-dot line), the bounds
on N goes to infinity and the system is not containable.

Theorems 4 and 5 can be derived using the following
lemma, which is the analogous of Lemma 4 in the logarithmic
case. See the Appendix for the proofs of Lemma 5 and
Theorem 4.

Lemma 5: Consider the feedback system in Fig. 7 with the
scalar plant (10) and a uniform quantizer (42). For k ∈ Z+,
suppose that the estimation set I−k satisfies{

eλtxk : xk ∈ I−k , t ∈ [0,∆]
}
⊂ (−σ, σ), (45)

i.e., I−k is contained in the quantizer’s input during the kth
sampling, and let l−k be the length of I−k . Then, the length lk
of Ik satisfies

min
u(t),

t∈((k−1)T+∆,kT )

max
xk∈I−

k ,δk∈[0,∆]
lk ≤ κe−λT l−k + β, (46)

where

κ :=
(
1− e−λ∆

) eλT

2
, β := e−λ∆w. (47)

Furthermore, it holds that

min
u(t),

t∈((k−1)T+∆,kT )

max
xk∈I−

k ,δk∈[0,∆]
lk

≥

{
l−k
2 if l−k < 2w,

κe−λT l−k + e−λ∆β else,
(48)

where the equality holds if l−k < 2w. In (46) and (48), the
minimum occurs when I−k is placed symmetrically about the
origin.

Proof of Theorem 5: (Sufficiency) We fix a specific
value for σ > 0 and show that there exists an interval
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I−0 = [−l−0 /2, l
−
0 /2], l

−
0 > 0, such that x(t) can be contained

in (−σ, σ) for all t ≥ 0. First, suppose that (43) holds. Then,
the constant κ defined by (47) satisfies κ < 1 and there exists
a constant l−0 such that w = 2σ/N and

σ >
eλ(T+∆)β

2(1− κ)
>

eλ∆

2
l−0 . (49)

With such a quantizer and I−0 , we have that |x(t)| <
eλ(T+∆)β/{2(1 − κ)} for t ∈ [0,∆]. Furthermore, we show
below that the state can be bounded by this upper bound for
all t > ∆.

Notice that I−0 = [−l−0 /2, l
−
0 /2] satisfies (45) from (49)

and is symmetric about the origin. Thus, from (46) and (49),
we have that l0 < β/(1 − κ). Therefore, in light of (46),
κ < 1, and l−k = eλT lk−1, by a control input which places
I−k symmetrically about the origin, we can make Ik so that
lk < β/(1− κ) and

|x(kT +∆)| ≤ eλ(T+∆)lk−1

2
<

eλ(T+∆)β

2(1− κ)
, ∀k ∈ Z+, (50)

where l−1 := e−λT l−0 .
Moreover, we can bound |x(t)| by the far right-hand side

of (50) also for t ∈ (kT +∆, (k + 1)T +∆) as follows:
From (50), there exists t1 ∈ (kT +∆, (k + 1)T ) such that
|x(t1)| < eλ(T+∆)β/{2(1−κ)}. Pick any t2 ∈ (t1, (k + 1)T )
and consider the control input which takes the constant during
[t1, t2] to bring the center of the set {eλ(t1−kT )xk : xk ∈ Ik}
to the origin and zero for the rest. Then, since |x((k+1)T+∆)|
satisfies the bound in (50), |x(t)| is also bounded by the same
upper bound for t > ∆.

On the other hand, when eλT < 2 is satisfied, there exists
I−0 such that l−0 < 2w. Then, from (48), l0 = l−0 /2, which
results in l−1 = eλT l0 < l−0 by the above control input, and
this concludes containability for this case as well.

(Necessity) When the system is containable, there exists
a control input so that the quantizer does not saturate, i.e.,
all xk ∈ Ik are bounded as |xk| < σ for all time k.
Otherwise, we lose track of some states compatible with the
past measurements. Thus, when (40) holds, the right-hand
side of (41) in Theorem 4 must be smaller than 2σ from
containability. This fact and N = 2σ/w lead us to (44).

C. Process with a vector-valued state

For a specific class of general order systems, we can
apply some of the results presented above for scalar systems.
Consider the feedback system in Fig. 7 with a plant (1) for
which the unstable part of A is real diagonalizable, i.e., A is
similar to the matrix [

Au 0
0 As

]
,

where Au := diag (λ1, . . . , λnu), λi > 0, i = 1, . . . , nu,
and As ∈ R(n−nu)×(n−nu) has no unstable eigenvalue. The
stabilization of this system boils down to stabilizing the
first-order systems ξ̇i(t) = λiξi(t) + νi(t), i = 1, . . . , nu,
based on the quantized values of ξi(kT + δk). If all the
first-order systems are stabilizable with logarithmic quantizers

(or containable with uniform quantizers), then the feedback
system is stabilizable in the sense of Definition 2 (containable
in the sense of Definition 4).

However, the results in Theorem 2 indicate that such condi-
tions induced by the scalar case results may be conservative.
The main difficulty in extending Theorem 2 to the quantization
case lies in the evaluation of the volume of the estimation
set Ik. Unlike in the no-quantization case, with quantization
the observed state comes as a set in the state space and the
set Jk becomes a band of exponential functions. Then, Ik is
the intersection of exponential bands and obtaining a lower
or upper bound of its volume analytically remains an open
problem.

VII. CONCLUSION

We studied the stability of a linear system using an asyn-
chronous sensor and controller connected with a communi-
cation channel. We first considered the quantization-free case
and derived conditions on the clock offset for stabilizability.
The condition for processes with a scalar-valued state gives a
tight limitation on the offset, which depends on the level of
instability of the plant and the sampling period. For processes
with a vector-valued state, we showed that if the plant has at
least two distinct poles, then the system is always stabilizable
in finite time. We then study for the quantization case. For
processes with a scalar-valued state with a logarithmic or
uniform quantizer, we derived a necessary condition and
a sufficient condition for stabilizability or containability, in
terms of the coarseness of the quantizers.

Although a stabilizing algorithm has been given in the
proofs, this algorithm is generally not suitable for practical
controllers. The construction of practical control algorithms
remains an important topic for future work. Other possible
extensions include the case with disturbances, the output
feedback case, and considering long delays which do not
satisfy Assumption 2.

Acknowledgment: The authors would like to thank Prof.
Kenji Kashima at Kyoto University for helpful discussion on
Lemma 3.

APPENDIX

We first present the proof of Lemma 5. Then, Theorem 4
is proved using Lemma 5.

Proof of Lemma 5: We follow the approach in the proof
of Lemma 4 and evaluate the maximum of lk over all possible
Yk. Let p and q denote the lower bound and the upper bound
for I−k , respectively, i.e., p := infξ∈I−

k
ξ and q := supξ∈I−

k
ξ,

and assume that |q| ≥ |p|.
The proof consists of three steps. First, we obtain an expres-

sion for maxYk
lk in terms of p and q. To do so, we consider

the two cases (i) p < 0 < q and (ii) 0 ≤ p < q. We then es-
tablish that minu(t) s.t. (i) maxYk

lk ≤ minu(t) s.t. (ii) maxYk
lk.

Finally, the inequalities (46) and (48) are proved using the
bounds on minu(t) maxYk

lk obtained in the previous step.



14

Step 1: Consider the following two cases.
(i) p < 0 < q: If in addition q < w, then lk = q or lk = |p|.

Thus, from the assumption |q| ≥ |p|, we have

max
Yk

lk = q. (51)

Otherwise, i.e., if q ≥ w, we show that

max
Yk

lk = max
{
q − e−λ∆

¯
q,

(
1− e−λ∆

)
¯
q + e−λ∆w

}
(52)

where
¯
q is the lower bound of the cell containing q, which

is given by
¯
q := ⌊q/w⌋w. In the case of (i), the set of all

possible Yk is given by Y+ ∪ Y−, where

Y+ :=

{
[iw, (i+ 1)w ) : 0 ≤ i ≤

⌊
eλ∆q
w

⌋
, i ∈ Z

}
,

Y− :=

{
[iw, (i+ 1)w ) :

⌊
eλ∆p
w

⌋
≤ i ≤ −1, i ∈ Z

}
.

When Yk ∈ Y+, it follows that

lk = min {q, (i+ 1)w} − e−λ∆iw, 0 ≤ i ≤
⌊

eλ∆q
w

⌋
, i ∈ Z.

Regarding the above lk, for Yk such that q < (i + 1)w, or
equivalently i ≥ ⌊q/w⌋, we have lk = q − e−λ∆iw. Since lk
is decreasing with i, it takes the maximum q−e−λ∆

¯
q when i =

⌊q/w⌋; otherwise, i.e., if i ≤ ⌊q/w⌋−1, then lk = (i+1)w−
e−λ∆iw, and hence its maximum is (1 − e−λ∆)

¯
q + e−λ∆w.

Therefore, (52) holds for Yk ∈ Y+.
Following the same discussion, for Yk ∈ Y−, we have that

max
Yk

lk = max
{
|p| − e−λ∆

⌊
|p|
w

⌋
w,

(
1− e−λ∆

) ⌊ |p|
w

⌋
w + e−λ∆w

}
.

Noticing that |q| ≥ |p|, this is smaller than or equal to the
right-hand side of (52). Thus, (52) expresses the maximum
over Y+ ∪ Y−.

From (51) and (52), maxYk
lk with I−k satisfying (i) is given

as

max
Yk

lk =

{
q − e−λ∆

¯
q if

¯
q = 0 or q −

¯
q ≥ e−λ∆w,(

1− e−λ∆
)
¯
q + e−λ∆w else.

(53)

(ii) 0 ≤ p < q: In this case, the range of possible Yk is
given by

Yk ∈
{
[iw, (i+ 1)w ) :

⌊ p

w

⌋
≤ i ≤

⌊
eλ∆q
w

⌋
, i ∈ Z

}
.

Hence, it follows that

lk = min {q, (i+ 1)w} −max
{
p, e−λ∆iw

}
,⌊ p

w

⌋
≤ i ≤

⌊
eλ∆q
w

⌋
, i ∈ Z.

Following a similar analysis to (i), we have that maxYk
lk with

I−k satisfying (ii) is given by

max
Yk

lk = max
{
q −max

{
p, e−λ∆

¯
q
}
,

¯
q −max

{
p, e−λ∆

(̄
q − w

)} }
. (54)

Step 2: In this step, we show that minu(t) s.t. (i) maxYk
lk ≤

minu(t) s.t. (ii) maxYk
lk. From (53), the minimum of

minu(t) s.t. (i) maxYk
lk can be computed as

min
u(t) s.t. (i)

max
Yk

lk=


L if L < w,

max
{
L− e−λ∆

⌊
L
w

⌋
w,(

1− e−λ∆
) ⌊

L
w

⌋
w + e−λ∆w

}
else,

(55)

where L := l−k /2. Meanwhile, it is difficult to obtain
minu(t) s.t. (ii) maxYk

lk directly from (54). Thus, in what fol-
lows, we prove that for any I−k satisfying (ii), maxYk

lk
becomes greater than (55).

Suppose that I−k corresponds to the case (ii) above and
consider two cases (a) L < w and (b) L ≥ w.

(a) L < w: We prove that, for this case, it holds that
maxYk

lk ≥ L, while minu(t) s.t. (i) maxYk
lk = L from (55).

To do so, three cases (a-1)–(a-3) are examined depending on
the size of I−k :

(a-1) p ≥
¯
q: In this case, I−k is contained in the quantization

cell
[̄
q,
¯
q + w

)
. Thus, it is true that maxYk

lk = 2L ≥ L.
(a-2)

¯
q − w ≤ p <

¯
q: From (54), we have that

max
Yk

lk = max
{
q −max

{
p, e−λ∆

¯
q
}
,
¯
q − p

}
≥ max

{
q −

¯
q,

¯
q − p

}
, (56)

where the inequality follows since
¯
q > p by (a-2) and

¯
q ≥

e−λ∆

¯
q. The far right-hand side of (56) is greater than or equal

to L since q −
¯
q < L implies that

¯
q − p = 2L− (q −

¯
q) > L.

(a-3) p <
¯
q − w: From the condition, the quantization cell[̄

q − w,
¯
q
)

becomes a subset of I−k . Such Yk results in Ik
such that lk ≥ w, which is greater than L by the condition
(a).

(b) L ≥ w: To obtain a simpler expression to (54), consider
two cases (b-1) and (b-2):

(b-1) p ≤ e−λ∆(
¯
q − w): From (54), it follows that

max
Yk

lk = max
{
q − e−λ∆

¯
q, (1− e−λ∆)

¯
q + e−λ∆w

}
.

Noticing that
¯
q > 0, we have that the above expression is the

same as the right-hand side of (53). Since q and
¯
q cannot be

smaller than or equal to those in the case (i), it holds that
maxYk

lk > minu(t) s.t. (i) maxYk
lk.

(b-2) p > e−λ∆(
¯
q − w): In this case, we have

max
Yk

lk = max
{
q − e−λ∆

¯
q,

¯
q − p

}
≥
¯
q − p = 2L−

(
q −

¯
q
)

> 2L− w ≥ L.

Here, the second inequality holds by the fact that q −
¯
q < w

and the third inequality is obtained by the condition (b). On the
other hand, from (55), it follows that minu(t) s.t. (i) maxYk

lk <
L and thus maxYk

lk > minu(t) s.t. (i) maxYk
lk for this case as

well.
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Step 3: From Step 2, we have that minu(t) maxYk
lk equals

minu(t) s.t. (i) maxYk
lk in (55) and the minimum occurs when

q = −p = L. With κ and β in (47), the right-hand side of
(55) is bounded from above as

min
u(t),

t∈((k−1)T+∆,kT )

max
Yk

lk ≤ κe−λT l−k + β,

which concludes (46). Moreover, since (55) is bounded from
below as

min
u(t),

t∈((k−1)T+∆,kT )

max
Yk

lk ≥

{
l−k
2 if l−k < 2w,

κe−λT l−k + e−λ∆β else,

we have (48).

Now we are ready to prove Theorem 4.
Proof of Theorem 4: (Sufficiency) In the setup of

Theorem 4, we employ the infinite-range uniform quantizer
(38). Thus, (45) in Lemma 5 follows for all k. Since it follows
that κ < 1 by ∆ < ∆ and from (46), we can make Ik so that
for any x(0) ∈ I−0 and {δk ∈ [0,∆]}∞k=0,

lim sup
k→∞

lk ≤ β

1− κ

by placing I−k symmetrically about the origin. Thus, using the
control input stated in the proof of Theorem 5, we have

lim sup
k→∞

|x(t)| ≤ eλ(T+∆)

2

β

1− κ
,

which establishes the lower branch of (39). Furthermore, if
eλT < 2, then it follows that β/(1 − κ) < 2e−λTw. Hence,
there exists k′ ∈ Z+ such that lk′ < 2e−λTw. By applying the
above stated input, we obtain from (48) that lk′+1 = eλT lk′/2,
which implies limk→∞ lk = 0 and thus we have (39).

(Necessity) If (40) holds, then e−λ∆β/(1− κ) ≥ 2e−λTw.
Thus, by (48), there exists a possible path of the state resulting
in

lim sup
k→∞

lk ≥ e−λ∆β

1− κ
.

The inequality (41) follows from this.
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